Patriksson Traffic Assignment Problem In Linear

  • [1]

    D. Bernstein and T.E. Smith, Programmability of discrete network equilibria, Statistics and Operations Research Technical Report SOR-94-19, Princeton University, Princeton, NJ, 1994.Google Scholar

  • [2]

    D.E. Boyce, K.S. Chon, Y.J. Lee, K.T. Lin and L.J. LeBlanc, Implementation and computational issues for combined models of location, destination, mode and route choice, Environment and Planning A 15(1983)1219 – 1230.Google Scholar

  • [3]

    O. Damberg, J.T. Lundgren and M. Patriksson, An algorithm for the stochastic user equilibrium problem, Transportation Research 30B(1996)115 – 131.Google Scholar

  • [4]

    S. Erlander, On the principle of monotone likelihood and log-linear models, Mathematical Programming Study 25(1985)108 – 123.Google Scholar

  • [5]

    S. Erlander, On the relationship between the discrete and continuous models for combined distribution and assignment, Transportation Research 22B(1988)371 –382.Google Scholar

  • [6]

    S. Erlander, Efficient population behavior in networks, dispersed equilibrium and the combined distribution and assignment model, Report LiTH-MAT-R-89-07, Department of Mathematics, Linköping Institute of Technology, Linköping, Sweden, 1989.Google Scholar

  • [7]

    S. Erlander, Efficient behavior and the simultaneous choices of origins, destinations and routes, Transportation Research 24B(1990)363– 373.Google Scholar

  • [8]

    S.P. Evans, Derivation and analysis of some models for combining trip distribution and assignment, Transportation Research 10(1976)37 – 57.CrossRefGoogle Scholar

  • [9]

    C. Fisk, Some developments in equilibrium traffic assignment, Transportation Research 14B(1980)243 –255.Google Scholar

  • [10]

    M. Frank and P. Wolfe, An algorithm for quadratic programming, Naval Research Logistics Quarterly 3(1956)95 – 110.Google Scholar

  • [11]

    B. Lamond and N.F. Stewart, Bregman's balancing method, Transportation Research 15B(1981)239 – 248.Google Scholar

  • [12]

    T. Larsson and M. Patriksson, Simplicial decomposition with disaggregated representation for the traffic assignment problem, Transportation Science 26(1992)4 – 17.CrossRefGoogle Scholar

  • [13]

    J.T. Lundgren, Optimization approaches to travel demand modelling, Doctoral Dissertation, Department of Mathematics, Linköping Institute of Technology, Linköping, Sweden, 1989.Google Scholar

  • [14]

    J.T. Lundgren and M. Patriksson, An algorithm for the combined distribution and assignment model, in: Transportation Networks; Recent Methodological Advances, Proceedings of the 4th Meeting of the EURO Working Group on Transportation, Newcastle University, Newcastle, UK, September 9– 11, 1996, eds. R.E. Allsop and M.G.H. Bell (to appear).Google Scholar

  • [15]

    M. Patriksson, Partial linearization methods in nonlinear programming, Journal of Optimization Theory and Applications 78(1993)227 – 246.CrossRefGoogle Scholar

  • [16]

    M. Patriksson, A unified description of iterative algorithms for traffic equilibria, European Journal of Operational Research 17(1993)154 – 176.CrossRefGoogle Scholar

  • [17]

    M. Patriksson, A unified framework of descent algorithms for nonlinear programs and variational inequalities, Doctoral Dissertation, Department of Mathematics, Linköping Institute of Technology, Linköping, Sweden, 1993.Google Scholar

  • [18]

    M. Patriksson, The Traffic Assignment Problem – Models and Methods, Topics in Transportation Series, VSP BV, Utrecht, The Netherlands, 1994.Google Scholar

  • [19]

    R.W. Rosenthal, The network equilibrium problem in integers, Networks 3(1973)53 – 59.Google Scholar

  • [20]

    Y. Sheffi, Urban Transportation Networks: Equilibrium Analysis with Mathematical Programming Methods, Prentice-Hall, Englewood Cliffs, NJ, 1985.Google Scholar

  • [21]

    T. E. Smith, A cost-efficiency principle of spatial interaction behaviour, Regional Science and Urban Economics 8(1978)313 – 337.CrossRefGoogle Scholar

  • [22]

    T. E. Smith, A cost-efficiency approach to the analysis of congested spatial-interaction behavior, Environment and Planning 15A(1983)435 – 464.Google Scholar

  • [23]

    T. E. Smith, A cost-efficiency theory of dispersed network equilibria, Environment and Planning 20A(1988)231–261.Google Scholar

  • [24]

    J.G. Wardrop, Some theoretical aspects of road traffic research, Proceedings of the Institute of Civil Engineers, Part II (1952)325 – 378.Google Scholar

  • Пусть ТРАНСТЕКСТ работает, - принял решение Стратмор.  - Я хочу быть абсолютно уверен, что это абсолютно стойкий шифр. Чатрукьян продолжал колотить по стеклу. - Ничего не поделаешь, - вздохнул Стратмор.  - Поддержи .

    0 Replies to “Patriksson Traffic Assignment Problem In Linear”

    Lascia un Commento

    L'indirizzo email non verrà pubblicato. I campi obbligatori sono contrassegnati *